
Lecture 11 examples

January 7, 2019

1 Strings, Structures and function pointers

1.1 Strings

In C, string is an array of characters, terminated by a speciall character, the NULL. Such strings
are refered to as Null-terminated strings.

Let us recall the things we know about characters * Occupies 1 byte * Each caracter has an
ASCI code * Some are whitespace - we do not see them * characters use ’ ’ not " "

In []: # include <stdio.h>

int main()
{

char c;
printf("The size of char is %ld\n", sizeof(char));
//1 byte stores ints from 0 to 255 (256 characters)
for(int i=50; i<55; ++i) // Set the range to what you want
{

printf("%d %c\n", i, i);
}

}

Let us see where is the Null character ’\0’

In []: # include <stdio.h>

int main()
{
//there is a special character! '\0'
for(int i=0; i<256; ++i)
{

if(i=='\0')
printf("%d %c\n", i, i); // the zero char

}
}

The speciall Null character is ’\0’ and is the first in the ASCII table. This character is important
to us. It will be used to mark termination of a string. It is used for: * Determining the length of

1

a string * Copying one string to another * Appending (concatenating) one string to another * Any
other operation on strings

We will now write a program storing multiple characters inside an array of characters - A word
or a sentence. The last entry is

In []: //Write a program storing multiple characters inside an array of characters - A word or a sentence
include <stdio.h>

int main(){
char word[256]; //an array of characters, let us see what is inside

word[0] = 'H';
word[1] = 'e';
word[2] = 'l';
word[3] = 'l';
word[4] = 'o';
word[5] = ' ';
word[6] = 'W';
word[7] = 'o';
word[8] = 'r';
word[9] = 'l';
word[10] = 'd';
word[11] = '\0';

for(int i=0; i<15; ++i) // Print character by character
{

printf("%c", word[i]);
}
printf("\n");

printf("%s\n", word); // Print as a string

for(int i=11; i<256; ++i) // Manipulate the string
{

word[i]=55; // this is 7!
}
word[20] = '\0'; // Add a Null character
printf("%s\n", word);//And print as a string

}

How many ’7’ was printed and why?
Let now have another example:

In []: # include <stdio.h>
include <stdlib.h>

int main(){
char a = 'a'; //this is a single char

2

char b = '\0'; //so is this

printf("%c %c --\n", a, b);

char tc[20];
tc[0] = 'a';
for(int i=0; i<20; ++i)
{

tc[i] = rand()%10+50;
printf("%c ", tc[i]);

}
tc[19] = '\0';
printf("\n%s\n", tc);

tc[3] = b; // '\0' is the termination character
printf("%s\n", tc);

}

1.1.1 Initialization of strings

Initialize strings in a more convinient way: * As a static array, entries of which we can modify, but
which can not be reasigned * As a pointer pointing at a static array, which we can not modify, but
we can reasign the pointer to a different address

In []: # include <stdio.h>
include <stdlib.h>

int main(){
// A static array a[]
char a[] = "The cat is black!";// {'a','s'}
printf("%s\n", a);

a[1] = 33;
printf("%s\n", a);
//a = "aaa"; // We can not do this!

// As a pointer pointing at a fixed, static array
char *p = "This cat is white!";
printf("%s\n", p);
printf("%p\n", p);

//We can not modify elelents sicne array is fixed at compilation
//p[1] = 33; //can not modify the value like that
// We can reassign the address
p = a;
printf("%s\n", p);
printf("%p\n", p);

3

p="aaaaa";
printf("%s\n", p);
printf("%p\n", p);

}

Note that each time address to which p pointed changed! The main message here is that ma-
nipulating strings is smoewhat difficult. Do not worry, we will deal with the subject by learning
string copping function!

1.1.2 Reading strings:

first with scanf(), but only up to a first whitespace character

In []: # include <stdio.h>

int main(){
char a[256];

scanf("%s", a);

printf("%s\n", a);
}

An alternative is tu use fgets function:
char *fgets (char *str, int size, FILE* file);
the function reads a string of data from FILE input, of size size and stores it in a buffer str.
The source freom which we read is more general than a simple file FILE, it can be a standard input
(stdin - the keybord).

In []: # include <stdio.h>

int main(){
char a[10];

fgets(a, 10, stdin); // Read from keyboard

printf("%s\n", a);
printf("%c %p\n", a[0], a);

}

As above, but the size of a buffer is determined on runtime, and dynamic allocation is used.

In []: # include <stdio.h>
include <stdlib.h>

int main(){
int n;
scanf("%d\n", &n);
char *p=(char*)malloc(n*sizeof(char));

4

fgets(p, n, stdin);

printf("%s\n", p);
printf("%c %p\n", p[0], p);

free(p);
}

Finally fgets, makes it easy to read from a file. Here we read a C source file and print the
content:

In []: # include <stdio.h>
include <stdlib.h>

int main(){
FILE *f=fopen("read4.c", "r");

char line[1000];
for(int i=0; i<15; ++i) //How to see if file has ended?
{

fgets(line, 1000, f);
printf("%s", line);

}
fclose(f);

}

1.1.3 String manipulation

There is a siute of functions designed for operations on strings, in order to use those we need to
include a new header: string.h, it gives access to the follwing functions: * Comparison: int strcmp
(const char s1, const char s2); Returns 0 if s1 and s2 are the same; less than 0 if s1s2. * String
concatenate: char strcat (char dest, const char src); Copy: char strcpy (char dest, const char src
); Length of a string: int strlen (const char s); char* strchr(s1, ch); Returns a pointer to the first
occurrence of character ch in string s1. * char* strstr(s1, s2); Returns a pointer to the first occurrence
of string s2 in string s1.

Let us start with "our" implementation of the string compare function, try to analyze how it
works:

In []: # include <stdio.h>

int mystrcmp(char *s1, char *s2)
{

for(int i=0; 1; ++i)
{

if(s1[i] - s2[i] != 0)
return s1[i] - s2[i];

if(s1[i] == '\0' || s2[i] == '\0') break;
}

5

return 0;
}

int main(){
char a[] = "111";
char key[]="aaa";
int res = mystrcmp(a, key);
printf("%d\n", res);

}

• String comparison with strcmp()

In []: # include <stdio.h>
include <string.h>

int main(){
char a[] = "ABCb";//65 66 67
char b[] = "ABCa";//97 98 99

int res = strcmp(b, a);
printf("res is: %d\n", res);

}

• String concatenate with strcat()

In []: # include <stdio.h>
include <string.h>

int main(){
char a[10] = "ABC";//65 66 67
char b[10] = "abc";//97 98 99

printf("%s \n", a);
printf("%s \n", b);
strcat(b, a); //make sure the size of a is enough!
printf("%s \n", a);
printf("%s \n", b);

}

• String copy with strcpy() - mind that we had trouble manipulating strings, this fuction will
be helpfull to us.

In []: # include <stdio.h>
include <string.h>

int main(){
char a[] = "AsssBC";//65 66 67
char b[] = "abffffdsadsadc";//97 98 99

6

printf("String a: %s \n", a);
printf("String b: %s \n", b);

strcpy(b, a); // Copy a to b
printf("String a: %s \n", a);
printf("String b: %s \n", b);

}

• String length with strlen()

In []: # include <stdio.h>
include <string.h>

int main(){
char a[] = "abc";
char b[] = "ABCDEF";

printf("%s \n", a);
printf("%s \n", b);

int l1=strlen(a);
int l2=strlen(b);

printf("Length of a: %d, length of b: %d\n", l1, l2);
}

• Find character in a string with strchr(s1, ch) - Returns a pointer to the first occurrence of
character ch in string s1.

In []: # include <stdio.h>
include <string.h>

int main(){
char a[] = "abcde";

char *p = strchr(a, 'c');

printf("%p\n", p);
if(p == NULL){

printf("Not found\n");
}
else{

printf("%c %p %ld\n", *p, p, p-a);
printf("%s\n", p);//!!

}
}

• Find a string in a string with strstr(s1, s2) - Returns a pointer to the first occurrence of string
s2 in string s1.

7

In []: # include <stdio.h>
include <string.h>

int main(){
char a[] = "Passing data to and from functions with pointers";
char key[]="data";
int l=strlen(key);

char *p = strstr(a, key);
if(*p!='\0')

*(p+l) = '\0';

printf("%c %p %ld\n", *p, p, p-a);
printf("%s\n", p);

}

1.2 Structures

Are used to group data and allow for better code organization. Up to now whe have been using
simple or primitive data types. I.e. such that represented a single data (int, double char ...). In case
wee needed multiple data we used arrays. With structures we can create compound or composite
data types.

• Usage of functions allowed to organize functionality
• Composite data types allow to organize data

In []: struct structure_name {
member_type member_mane ;
member_type member_mane ;
//...
member_type member_mane ;

} one or more structure variables ;

To access members of a structure use . or -> in case of pointers

In []: # include <stdio.h>
include <string.h>

struct Robot { // Our first structure!
char name[50];
double x ,y;

};

int main(){
printf("Robot program\n");

struct Robot r1;
strcpy(r1.name, "R2D1");
r1.x = 0;

8

r1.y = 0;

printf("Name: %s, Position %lf, %lf\n", r1.name, r1.x, r1.y);

struct Robot *pr = &r1;
printf("%p Name: %s, Position %lf, %lf\n", pr, pr->name,
pr->x, pr->y);

printf("%ld", sizeof(struct Robot)); // ???
}

Add a function that perform operation on a structure Robot

In []: # include <stdio.h>
include <string.h>

struct Robot {
char name[50];
double x ,y;

} r1 ; // Define a variable of type struct Robot

void print_robot(struct Robot *r)
{

printf("Robot name: %s\n", r->name);
printf("Position x=%lf y=%lf\n", r->x, r->y);

}

int main () {
// r1 allready defined and global
strcpy(r1.name, "aaaa");
r1.x = 8.0; r1.y = 0;

struct Robot r3;
strcpy(r3.name, "bbb");
r3.x = 1.0; r3.y = 0;

struct Robot *p = &r3 ;
p->y=5.0;

print_robot(&r1);
print_robot(&r3);

}

1.3 Pointers to functions

Do functions have addresses? Yes!
Have two functions and print their addresses:

9

In []: # include <stdio.h>
include <string.h>

void f1()
{

printf("Hello from f1 %p\n", f1);
}

void f2()
{

printf("Hello from f2 %p\n", f2);
}

int main () {
printf("Address of f1 is %p\n", f1);
printf("Address of f2 is %p\n", f2);

f1();
f2();

}

So functions have addresses and we can pass those addresses, as we would pass address of
normal variables. Or in other words, we can make function accept other functions as arguments!

In []: # include <stdio.h>
include <string.h>

void f1()
{

printf("Hello from f1 %p\n", f1);
}

void f2()
{

printf("Hello from f2 %p\n", f2);
}

// This function accepst an argument of type void
//that is a function with empty argument list
void funcaller(void ff(void))
{

printf("A call from a funcaller: ");
ff(); // A call to the argument function

}

int main () {
printf("Address of f1 is %p\n", f1);
printf("Address of f2 is %p\n", f2);

10

funcaller(f1);
funcaller(f2);

}

Note the argument list of the funcaller(void ff(void)) and the way we used it in lines 26 and 27.
This ability of C language is very important to us. We now gained the ability to write generic

functions. I.e. such that can work with a multitude of other functions, as long as the interface to
the function is maintained. (In the above example we could have used any function that is of type
void and needs no arguments.)

We conclude with an example. Let us assume we are designing a function to calculate integrals
of other functions (integrate some f(x) for the values of x ranging from a to b). We will not perform
any inegration (would you be able to propose a valid algorithm?), but instead write a general
interface for such a function.

In []: //%cflags:-lm

include <stdio.h>
include <string.h>
include <math.h>

//Some inegration function
// f is of type double and accepts a single argument
double integrator(double a, double b, double f(double))
{

printf("%lf %lf\n", f(a), f(b));
}

double fun1(double x){
return x*x - 2*x + 5;

}

double fun2(double x){
return sin(x) * cos(x) * exp(2.0*x);

}

int main () {
printf("Use integrator with fun1\n");
integrator(4, 5, fun1);
printf("Use integrator with fun2\n");
integrator(4, 5, fun2);
printf("Use integrator with some other functions\n");
integrator(4, 5, sin);
integrator(4, 5, cos);
//integrator(4, 5, pow); we can not do this!

}

11

	Strings, Structures and function pointers
	Strings
	Initialization of strings
	Reading strings:
	String manipulation

	Structures
	Pointers to functions

